El Unico Post, Dorado February 06, 2023.

Centroid coordinates : $18.46772^{\circ} \mathrm{N} 66.23711^{\circ} \mathrm{W}$

3D map
 El Unico Post, Dorado

2D map

Beach length (m)
El Unico Post, Dorado

Beach length $=254.913 \mathrm{~m}$

Density surface model
El Unico Post, Dorado

Area of the beach
 El Unico Post, Dorado

Area of the beach $=4,239.32 \mathrm{~m}^{2}$

Beach volume

El Unico Post, Dorado

Cut $=0.00 \mathrm{~m}^{3}$
Fill $=-163,431 \mathrm{~m}^{3}$
Volume Dif. $=-163,431 \mathrm{~m}^{3}$

Beach elevation
El Unico Post, Dorado

Site elevation (m)
El Unico Post, Dorado

Distance from shore (m)

Dune height (m)
El Unico Post, Dorado

Dune height
A $=42.334 \mathrm{~m}$
$B=21.721 \mathrm{~m}$
C $=32.408 \mathrm{~m}$

Dune width (m)
El Unico Post, Dorado

Dune width
$A=55.942 \mathrm{~m}$
$B=28.941 \mathrm{~m}$
$C=40.988 \mathrm{~m}$

Area and perimeter of dune

 El Unico Post, Dorado

A - Area and perimeter of dune
2D area $=3,833.18 \mathrm{~m}^{2}$
B - Area and perimeter of dune
2D area $=841.629 \mathrm{~m}^{2}$
3D area $=3,844.63 \mathrm{~m}^{2}$
2D perimeter $=270.905 \mathrm{~m}$
3D perimeter $=271.445 \mathrm{~m}$
Elevation difference $=3.767 \mathrm{~m}$
3D area $=853.065 \mathrm{~m}^{2}$
2D perimeter $=133.643 \mathrm{~m}$
3D perimeter $=134.398 \mathrm{~m}$
Elevation difference $=3.01 \mathrm{~m}$

C - Area and perimeter of dune
2D area $=2,691.91 \mathrm{~m}^{2}$
3D area $=2,691.91 \mathrm{~m}^{2}$
2D perimeter $=232.144 \mathrm{~m}$
3D perimeter $=232.144 \mathrm{~m}$
Elevation difference $=0.00 \mathrm{~m}$

Volume of dune
 El Unico Post, Dorado

	A
Base surface	
	Triangulated
Cut volume	
Cut error	$13,626.9 \mathrm{~m}^{3}$
Fill volume	$111.221 \mathrm{~m}^{3}$
Fill error	$-443.164 \mathrm{~m}^{3}$
Volume difference	$13,183.7 \mathrm{~m}^{3}$

	B
Base surface	
	Triangulated
Cut volume	
Cut error	$750.34 \mathrm{~m}^{3}$
Fill volume	$8.25419 \mathrm{~m}^{3}$
Fill error	$-199.087 \mathrm{~m}^{3}$
Volume difference	$5.15295 \mathrm{~m}^{3}$
	$551.253 \mathrm{~m}^{3}$

C

Base surface
Triangulated
Cut volume
3,052.95 m ${ }^{3}$
Cut error
Fill volume
Fill error
$5.18502 \mathrm{~m}^{3}$
$-84,510.6 \mathrm{~m}^{3}$
$80.4933 \mathrm{~m}^{3}$
Volume difference
$-81,457.6 \mathrm{~m}^{3}$

Shoreline
El Unico Post, Dorado

Shoreline length $=256.913 \mathrm{~m}$

Shoreline geolocation
El Unico Post, Dorado

Shoreline markers
$\mathbf{A}=18.46811^{\circ} \mathrm{N} 66.23789^{\circ} \mathrm{W}$
$B=18.46808^{\circ} \mathrm{N} 66.23737^{\circ} \mathrm{W}$
C $=18.46796^{\circ} \mathrm{N} 66.23675^{\circ} \mathrm{W}$
D $=18.46791^{\circ} \mathrm{N} 66.23620^{\circ} \mathrm{W}$

Shoreline extension

El Unico Post, Dorado

Shoreline extension
$\mathbf{A}=11.851 \mathrm{~m}$
$B=12.543 \mathrm{~m}$

Shoreline position El Unico Post, Dorado

Shoreline position
$A=21.411 \mathrm{~m}$
$B=15.48 \mathrm{~m}$
$\mathbf{C}=10.201 \mathrm{~m}$

Area of dune breaches

El Unico Post, Dorado

A

Area of dune breaches
Breach $=3,833.18 \mathrm{~m}^{2}$

B

Area of dune breaches
Breach =841.629 m²

C

Area of dune breaches
Breach $=2,691.91 \mathrm{~m}^{2}$
(I) Important: Click on the different icons for:Help to analyze the results in the Quality ReportAdditional information about the sections

Click here for additional tips to analyze the Quality Report

Summary

Project	201643-Project-2023-02-06T22:42:32.987Z
Processed	$2023-02-06$ 23:31:36
Camera Model Name(s)	FC6310R_8.8_5472x3648 (RGB)
Average Ground Sampling Distance (GSD)	$1.06 \mathrm{~cm} / 0.42$ in
Area Covered	$0.018 \mathrm{~km}^{2} / 1.8003 \mathrm{ha} / 0.01 \mathrm{sq} . \mathrm{mi} . / 4.4508$ acres
Time for Initial Processing (without report)	$33 \mathrm{~m}: 22 \mathrm{~s}$

Quality Check
? Images median of 46075 keypoints per image ? Dataset 280 out of 316 images calibrated (88\%), all images enabled, 5 blocks ? Camera Optimization 0.1% relative difference between initial and optimized internal camera parameters ? Matching median of 5471.28 matches per calibrated image (i) ? Georeferencing yes, no 3D GCP

(?) Preview

Figure 1: Orthomosaic and the corresponding sparse Digital Surface Model (DSM) before densification.

Calibration Details

Number of Calibrated Images	280 out of 316
Number of Geolocated Images	316 out of 316

Figure 2: Top view of the initial image position. The green line follows the position of the images in time starting from the large blue dot.
(?) Computed Image/GCPs/Manual Tie Points Positions
(i)

Uncertainty ellipses 100x magnified

Figure 3: Offset between initial (blue dots) and computed (green dots) image positions as well as the offset between the GCPs initial positions (blue crosses) and their computed positions (green crosses) in the top-view (XY plane), front-view (XZ plane), and side-view (YZ plane). Red dots indicate disabled or uncalibrated images. Dark green ellipses indicate the absolute position uncertainty of the bundle block adjustment result.
(?) Absolute camera position and orientation uncertainties

	$\mathrm{X}[\mathrm{m}]$	$\mathrm{Y}[\mathrm{m}]$	$\mathrm{Z}[\mathrm{m}]$	Omega [degree]	Phi [degree]	Kappa [degree]
Mean	0.022	0.015	0.016	0.036	0.054	0.058
Sigma	0.105	0.021	0.030	0.080	0.178	0.234

Bundle Block Adjustment Details

Number of 2D Keypoint Observations for Bundle Block Adjustment	1664945
Number of 3D Points for Bundle Block Adjustment	661491
Mean Reprojection Error [pixels]	0.191

(?) Internal Camera Parameters

FC6310R_8.8_5472x3648 (RGB). Sensor Dimensions: 12.833 [mm] x 8.556 [mm]
EXIF ID: FC6310R_8.8_5472x3648

	Focal Length	Principal Point x	Principal Point y	R1	R2	R3	T1	T2
Initial Values	$\begin{aligned} & 3658.300 \text { [pixel] } \\ & 8.580[\mathrm{~mm}] \end{aligned}$	2722.500 [pixel] 6.385 [mm]	1835.100 [pixel] 4.304 [mm]	-0.269	0.112	-0.033	0.000	-0.001
Optimized Values	$\begin{aligned} & 3662.300[\text { pixel }] \\ & 8.589[\mathrm{~mm}] \end{aligned}$	$\begin{aligned} & 2734.608 \text { [pixel] } \\ & 6.413[\mathrm{~mm}] \end{aligned}$	1809.846 [pixel] 4.245 [mm]	0.000	-0.015	0.015	-0.001	-0.001
Uncertainties (Sigma)	$\begin{aligned} & 0.785 \text { [pixel] } \\ & 0.002 \text { [mm] } \end{aligned}$	0.511 [pixel] 0.001 [mm]	0.904 [pixel] 0.002 [mm]	0.000	0.001	0.001	0.000	0.000

The correlation between camera internal parameters determined by the bundle adjustment. White indicates a full correlation between the parameters, ie. any change in one can be fully compensated by the other. Black indicates that the parameter is completely independent, and is not affected by other parameters.

The number of Automatic Tie Points (ATPs) per pixel, averaged over all images of the camera model, is color coded between black and white. White indicates that, on average, more than 16 ATPs have been extracted at the pixel location. Black indicates that, on average, 0 ATPs have been extracted at the pixel location. Click on the image to the see the average direction and magnitude of the re-projection error for each pixel. Note that the vectors are scaled for better visualization. The scale bar indicates the magnitude of 1 pixel error.

(?) 2D Keypoints Table

	Number of 2D Keypoints per Image	Number of Matched 2D Keypoints per Image
Median	46075	5471
Min	20904	30

Max	79500	20483
Mean	47682	5946

? 3D Points from 2D Keypoint Matches

	Number of 3D Points Observed
In 2 Images	483394
In 3 Images	100664
In 4 Images	38933
In 5 Images	18073
In 6 Images	9266
In 7 Images	4862
In 8 Images	2642
In 9 Images	1353
In 10 Images	774
In 11 Images	563
In 12 Images	360
In 13 Images	234
In 14 Images	131
In 15 Images	88
In 16 Images	61
In 17 Images	36
In 18 Images	22
In 19 Images	22
In 20 Images	5
In 21 Images	6
In 22 Images	1
In 26 Images	1

(?) 2D Keypoint Matches

(?) Relative camera position and orientation uncertainties
(i)

	$\mathrm{X}[\mathrm{m}]$	$\mathrm{Y}[\mathrm{m}]$	$\mathrm{Z}[\mathrm{m}]$	Omega [degree]	Phi [degree]	Kappa [degree]
Mean	0.134	0.125	0.129	0.219	0.191	0.159
Sigma	0.151	0.122	0.127	0.179	0.200	0.182

Geolocation Details

(?) Absolute Geolocation Variance

Min Error [m]	Max Error [m]	Geolocation Error X [\%]	Geolocation Error Y [\%]	Geolocation Error Z [\%]
-	-0.80	0.00	0.00	0.00
-0.80	-0.64	0.00	0.00	0.00
-0.64	-0.48	0.00	0.00	0.00
-0.48	-0.32	0.00	0.00	0.00
-0.32	-0.16	0.54	0.00	0.00
-0.16	0.00	49.19	46.49	48.65
0.00	0.16	50.27	53.51	51.35
0.16	0.32	0.00	0.00	0.00
0.32	0.48	0.00	0.00	0.00
0.48	0.64	0.00	0.00	0.00
0.64	0.80	0.00	0.00	0.00
0.80	-	0.00	0.00	0.00
Mean [m]		-0.001720	-0.000239	0.002480
Sigma [m]		0.025357	0.014615	0.032214
RMS Error [m]		0.025415		0.032309

Min Error and Max Error represent geolocation error intervals between -1.5 and $\mathbf{1 . 5}$ times the maximum accuracy of all the images. Columns $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ show the percentage of images with geolocation errors within the predefined error intervals. The geolocation error is the difference between the initial and computed image positions. Note that the image geolocation errors do not correspond to the accuracy of the observed 3D points.
(?) Relative Geolocation Variance
(i)

Relative Geolocation Error	Images $X[\%]$	Images Y [\%]	Images Z [\%]
$[-1.00,1.00]$	78.38	82.70	78.38
$[-2.00,2.00]$	95.14	95.68	96.22
$[-3.00,3.00]$	97.30	98.92	100.00
Mean of Geolocation Accuracy $[\mathbf{m}]$	0.019215	0.019215	0.036447
Sigma of Geolocation Accuracy $[\mathbf{m}]$	0.028840	0.028840	0.053788

Images X, Y, Z represent the percentage of images with a relative geolocation error in X, Y, Z.

Geolocation Orientational Variance	RMS [degree]
Omega	19.892
Phi	1.721
Kappa	28.899

Initial Processing Details

Point Cloud Densification details (c)

Processing Options (i)

Image Scale	multiscale, $1 / 2$ (Half image size, Default)
Point Density	Optimal
Minimum Number of Matches	3
3D Textured Mesh Generation	yes
3D Textured Mesh Settings:	Resolution: Medium Resolution (default) Color Balancing: no
LOD	Generated: no
Advanced: 3D Textured Mesh Settings	Sample Density Divider: 1
Advanced: Image Groups	group1
Advanced: Use Processing Area	yes
Advanced: Use Annotations	yes
Time for Point Cloud Densification	$12 \mathrm{~m}: 11 \mathrm{~s}$
Time for Point Cloud Classification	NA
Time for 3D Textured Mesh Generation	$06 \mathrm{~m}: 37 \mathrm{~s}$

Results

(i)

Number of Generated Tiles	1
Number of 3D Densified Points	19920742
Average Density $\left(\right.$ per $\left.\mathrm{m}^{3}\right)$	2388.57

DSM and Orthomosaic Resolution	$1 \times$ GSD (1.06 [cm/pixel])
DSM Filters	Noise Filtering: yes Surface Smoothing: yes, Type: Sharp
Raster DSM	Generated: yes Method: Inverse Distance Weighting Merge Tiles: yes
Orthomosaic Generated: yes Merge Tiles: yes GeoTIFF Without Transparency: no Google Maps Tiles and KML: no	
	$03 \mathrm{~m}: 53 \mathrm{~s}$
Time for Orthomosaic Generation	$11 \mathrm{~m}: 50 \mathrm{~s}$
Time for DTM Generation	00 s
Time for Contour Lines Generation	00 s
Time for Reflectance Map Generation	00 s
Time for Index Map Generation	00 s

El Unico Post, Dorado

